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Abstract

The current essay is an expository work presenting Christodoulou’s proof in [6] of the Weak Cosmic

Censorship for the Einstein scalar field equations in spherical symmetry. The key idea of the proof is that

the blue-shift effect represents an instability mechanism, forcing solutions with naked singularities to be

unstable. We also briefly illustrate the other results that enter the proof of the Weak Cosmic Censorship,

as in [3]− [4] and [8]− [10].

1 Introduction

The fundamental object of general relativity is a spacetime (M, g), together with various matter models

defined on it, which satisfies the Einstein equations:

Rµν −
1

2
Rgµν = 8πTµν ,

coupled with the corresponding matter equations. Here Tµν represents the stress-energy-momentum tensor.

Given matter that arises from a Lagrangian, there is a canonical way to obtain Tµν . For example, if the

matter Lagrangian is that of a massive scalar field φ, then (M, g, φ) need to satisfy the Einstein-Klein-

Gordon system of equations. Similarly, we can consider as matter models an electromagnetic field to obtain

the Einstein-Maxwell system or a barotropic relativistic perfect fluid to obtain the Einstein-Euler system.

One of the most remarkable features of general relativity is that the theory is non-trivial even in the

absence of matter. Thus, considering the trivial stress-energy-momentum tensor, we obtain the vacuum

Einstein equations:

Rµν = 0,

which admit curved solutions.

In the above covariant form, it is unclear what "type" of PDEs the Einstein vacuum equations are.

However, in a suitable gauge the equations are manifestly hyperbolic, so we can study the initial value
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problem. Initial data for the Einstein vacuum equations consist of a triple (Σ, h, k), where (Σ, h) is a

3−dimensional Riemannian manifold, and k is a symmetric covariant 2−tensor. In order to have that Σ is

(isometric to) a spacelike hypersurface in a spacetime (M, g), with induced metric h and second fundamental

form k, we note that h and k need to satisfy the Gauss-Codazzi equations. We refer to these as the constraint

equations. We cite the following result from [1]:

Theorem 1. Consider initial data (Σ, h, k) for the Einstein vacuum equations, satisfying the constraint

equations. There exists, up to isometry, a unique globally hyperbolic spacetime (M, g) solving the Einstein

vacuum equations, with Cauchy hypersurface Σ such that the induced metric and second fundamental forms

on Σ are h and k, and that is the maximal spacetime satisfying these properties. We call this spacetime the

maximal globally hyperbolic Cauchy development of the initial data (Σ, h, k).

We remark that similar results hold when we couple the Einstein equations with matter satisfying

hyperbolic PDEs.

Following the above result, it is natural to ask whether this maximal spacetime is complete. Specific

examples such as the Schwarzschild solutions do not satisfy this property, but one may think this is just an

artefact of spherical symmetry. It turns out we can infer that a spacetime is incomplete under assumptions

that are stable to perturbation. This is the famous Incompleteness Theorem of Penrose, proved in [11], for

which he received the Nobel Prize ([14]).

Theorem 2. Consider (M, g) to be a connected globally hyperbolic spacetime with a non-compact Cauchy

hypersurface Σ. Assume that the spacetime satisfies the null energy condition, i.e. R(v, v) ≥ 0, ∀ v null. If

the spacetime also contains a closed trapped surface, then it is future geodesically incomplete.

We note that the above theorem does not say anything about the reason for incompleteness: an incom-

plete geodesic could either reach a curvature singularity, or it could exit the globally hyperbolic domain in

finite proper time. We remark that it also assumes the existence of a trapped surface in the initial data, an

issue that we will address in section 4.

In the case of a Schwarzschild black hole with positive mass parameter, the curvature singularity is "hid-

den" behind the event horizon. However, in general there is also the possibility that a curvature singularity

is visible to observers outside of the black hole, in particular it is in the causal past of far away observers.

Such a singularity is called a naked singularity. In [12], Penrose conjectured that naked singularities do not

occur generically:

Conjecture 1 (Weak Cosmic Censorship). For generic asymptotically flat initial data for the Einstein

vacuum equations, the maximal globally hyperbolic future Cauchy development does not contain a naked

singularity.

Starting from the idea that a naked singularity is visible to far away observers, so they cannot exist for

infinite time, the Weak Cosmic Censorship conjecture can be restated as:
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Conjecture 2 (Weak Cosmic Censorship, [7]). For generic asymptotically flat initial data for the Einstein

vacuum equations, the maximal globally hyperbolic future Cauchy development has a complete future null

infinity I+.

We now briefly explain why the genericity assumption is necessary in the above conjectures. The textbook

example of a naked singularity is that of negative mass Schwarzschild, but in this case the initial data is not

asymptotically flat. However, Christodoulou constructed spherically symmetric examples of asymptotically

flat spacetimes with naked singularities for dust ([2]) and for a self-gravitating scalar field ([5]). More recently,

Rodnianski and Shlapentokh-Rothman constructed examples of asymptotically flat spacetimes with naked

singularities for the Einstein vacuum equations, which are not spherically symmetric ([13]).

The Weak Cosmic Censorship conjecture is one of the main open problems in general relativity. Part of

the difficulty lies in the fact that the Einstein vacuum equations are a nonlinear system of 10 equations in

1+3 dimensions. In view of this we make simplifying assumptions, so we consider solutions satisfying certain

symmetries. The most natural such assumption is that of spherical symmetry, which we make precise now:

Definition 1. A spacetime (M, g) is said to be spherically symmetric if its isometry group contains a subgroup

isomorphic to SO(3), with orbits 2−spheres.

However, Birkhoff’s theorem states that vacuum spherically symmetric spacetimes are locally isometric

to the Schwarzschild solution (with parameter M > 0, M = 0, or M < 0). A similar rigidity result holds for

charged spherically symmetric spacetimes. The most simple non-singular matter model for which spherically

symmetric solutions have dynamics is that of a massless scalar field. Thus, we restrict our study to a sperically

symmetric spacetime (M, g) with a massless scalar field φ. In this case, the Klein-Gordon equation for φ is

just the wave equation on (M, g) and the stress-energy-momentum tensor is:

Tµν = ∂µφ∂νφ−
1

2
gµν∂

αφ∂αφ.

We obtain the Einstein scalar field equations:Rµν = 8π∂µφ∂νφ

�gφ = 0
(1)

For this matter model, the Weak Cosmic Censorship conjecture can be formulated as follows:

Conjecture 3 (Weak Cosmic Censorship, Einstein Scalar Field in Spherical Symmetry). For generic asymp-

totically flat initial data for the Einstein scalar field equations in spherical symmetry, the maximal globally

hyperbolic future Cauchy development has a complete future null infinity I+.

The Weak Cosmic Censorship conjecture was proved for the Einstein scalar field in spherical symmetry

in Christodoulou’s remarkable work [6], the first result of this kind. This built up on results previously

obtained by Christodoulou in [3]− [5], while an overview of the entire proof of the conjecture is given in [7].
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The current essay is an expository work based on [6], where we aim to present the proof of the instability

of naked singularities for the Einstein scalar field equations in spherical symmetry. We also give a brief

overview of the other elements that enter the proof of the Weak Cosmic Censorship. In section 2 we describe

the general global structure of (smooth) spherically symmetric solutions to the Einstein scalar field equations,

based on [3], [8], [9], and [10]. In section 3 we follow [4] to introduce a less regular class of solutions, namely

the solutions of bounded variation, which is needed in the proof of the Weak Cosmic Censorship. In section

4 we present the criterion of [3] for the formation of trapped surfaces based on information on initial data.

In section 5 we obtain that the existence of a trapped surface is a sufficient condition to have a complete

I+, based on [8]. The center of the essay is section 6, where we present the proof in [6]. We introduce the

blue-shift effect, and use it in section 6.1 to prove the main instability theorem. Finally, in section 6.2 we

prove that the exceptional set of initial data leading to naked singularities has positive co-dimension in the

set of integrable absolutely continuous initial data, completing the proof of the Weak Cosmic Censorship.

2 Global Structure of Spherically Symmetric Einstein Scalar Field

Solutions

We consider spherically symmetric asymptotically flat initial data (Σ, h, k) for the Einstein scalar field equa-

tions, and denote by (M, g) its maximal globally hyperbolic future Cauchy development. Because of the

spherical symmetry assumption, the quotient manifold Q+ = J+(Σ)/SO(3) inherits the structure of a 1 + 1

Lorentzian manifold with boundary. We denote by Γ the portion of the boundary corresponding to the set

of fixed points of the action of SO(3), which we call the center. As a 1 + 1 Lorentzian manifold, Q+ can

be globally covered by double null coordinates (u, v), so the induced metric on Q+ is −Ω2dudv. Then, the

spacetime (M, g) can be globally1 covered by double null coordinates (u, v, θ, φ). The metric on M is:

g = −Ω2dudv + r2(dθ2 + sin2 θdφ2),

where the function r represents the area radius of the group orbits.

Since the metric on Q+ is conformal to that of the 1 + 1 dimensional Minkowski space, we can represent

Q+ as a submanifold of R1+1 using Penrose diagrams. This approach offers a canonical way of attaching a

boundary to the quotient Q+. We point out that we use the topology and causality of the ambient R1+1.

Under the assumption of spherical symmetry, the Einstein scalar field equations can be written as a

system of PDEs on the quotient manifold Q+. In double null coordinates the Einstein equations in (1)

become:

∂u(Ω−2∂ur) = −4πrΩ−2(∂uφ)2 (2)

∂v(Ω
−2∂vr) = −4πrΩ−2(∂vφ)2 (3)

1Except of course for the usual coordinate singularities of the standard coordinates (θ, φ) on the sphere.
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∂u∂v log Ω = −1

r
∂u∂vr − 4π∂uφ∂vφ (4)

∂u∂vr
2 = −1

2
Ω2 (5)

Equations (2) and (3) are the famous Raychaudhuri equations. We define the Hawking mass:

m =
r

2
(1 + 4Ω−2∂ur∂vr), (6)

which satisfies the equations:

∂um = −8πr2Ω−2∂vr(∂uφ)2 (7)

∂vm = −8πr2Ω−2∂ur(∂vφ)2 (8)

Finally, the wave equation in (1) can be written as:

r∂u∂vφ+ ∂vφ∂ur + ∂uφ∂vr = 0 (9)

We consider the boundary conditions r = 0, m = 0 on Γ, and prescribe characteristic initial data (r,Ω, φ)

on an outgoing null cone C+
0 := {u = 0}, such that r ∈ C2, Ω, φ ∈ C1. We remark that the initial data

must satisfy the constraint equation (2). To have asymptotically flat initial data, we also require that m is

bounded on the initial hypersurface C+
0 , with supremum Mf . Under this conditions we obtain a solution

r ∈ C2, Ω, φ ∈ C1 in Q+. In the view of the following sections, we shall refer to this as a "smooth" solution.

To obtain a smooth solution in Q+ as described above, we firstly need to have local well-posedness in

the class of smooth initial data. This follows by a standard iteration argument. Then, in order for Q+ to

be maximal, we also need an extension principle. In the following we use the notion of a first singularity as

defined in [9]. We have the following extension principle from [10]:

Theorem 3. Let p ∈ Q+\Q+ be a first singularity away from the center, i.e. p /∈ Γ\Γ. For any q ∈(
I−(p) ∩Q+

)
\{p} such that D =

(
J+(q) ∩ J−(p)

)
\{p} ⊂ Q+, we have infD r = 0.

In the following proposition we list some useful basic monotonicity properties satisfied by the solution:

Proposition 1. For a smooth solution in Q+ we have that ∂ur < 0, m ≥ 0, ∂u∂vr ≤ 0, ∂vm ≥ 0. We also

have that ∂vr and 1− 2m
r have the same sign, while ∂vr and ∂um have opposite signs. Finally, in the causal

past of Γ we have that ∂vr ≥ 0.

Proof. Using the boundary condition r = 0 on Γ and the fact that ∂vr > 0 at Γ ∩ C+
0 , we get ∂ur < 0 at

Γ ∩ C+
0 . By (5) we have that ∂ur < 0 on C+

0 . We remark that the Raychaudhuri equations imply:

∂u(Ω−2∂ur) ≤ 0, ∂v(Ω
−2∂vr) ≤ 0.

In particular, ∂ur < 0 in Q+. From equation (8) we get ∂vm ≥ 0, and using the boundary condition m = 0

on Γ we obtain that m ≥ 0 in Q+. We use (5) to write m = −2r2Ω−2∂u∂vr. Thus:

∂u∂vr ≤ 0.
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The rest of the proof follows in a similar fashion.

Definition 2. We define the regular, trapped and marginally trapped regions as follows:

R =
{
p ∈ Q+ : ∂vr > 0

}
,

T =
{
p ∈ Q+ : ∂vr < 0

}
,

A =
{
p ∈ Q+ : ∂vr = 0

}
.

We have the following result from [4], which proves that T is a future set and A is achronal:

Proposition 2. Let p = (u, v) ∈ Q+. If p ∈ T then J+(p)∩Q+ ⊂ T . If p ∈ T ∪A then J+(p)∩Q+ ⊂ T ∪A
and for any q = (u′, v′) ∈ J+(p) ∩Q+ with u′ > u we have q ∈ T .

We follow the discussion in [8] to introduce the concepts of future null infinity and event horizon. We

define the set U =
{
u : sup(u,v)∈Q+ r(u, v) = ∞

}
. This set is nonempty because our data is asymptotically

flat. We notice that for any u ∈ U there exists a unique v∗(u) such that
(
u, v∗(u)

)
∈ Q+\Q+.

Definition 3. Future null infinity is the set:

I+ =
⋃
u∈U

(
u, v∗(u)

)
.

We interpret I+ as the set of far away observers. According to [8], we have that if I+ is nonempty, it is an

ingoing null connected curve with v = vI+ . We define timelike infinity to be the point i+ = (supu∈U u, vI+).

Using the monotonicity properties, one also gets that J−(I+) ∩Q+ ⊂ R.

Definition 4. If A ∪ T 6= ∅, we define the event horizon H+ to be the future boundary of J−(I+) ∩ Q+ in

Q+. By the extension principle we get that H = Q+ ∩ {u = uH}, where uH = supu∈U u.

According to [8] we also have that the event horizon is complete and the Penrose-type inequality r ≤ 2Mf

holds. In particular this implies that i+ /∈ I+.

We now define the other possible components of the boundary as in [10]. Denote bΓ = Γ\Γ. If bΓ = i+

we obtain that Q+ = R so the solution has the Penrose diagram of Minkowski space. We call such a solution

dispersive. If bΓ 6= i+, we say that bΓ is a first singularity at the center. We define the central component of

the singular boundary :

B0 =
{

(ubΓ , v) ∈ Q+
}
.

Finally, we define the singular component of the boundary :

B =
{

(u, v) ∈ Q+\Q+ : ui+ < u < ubΓ
}
.

A priori we only have that B is a union of first singularities and null Cauchy horizons arising out of them.

However, using the extension principle and the above two propositions it is straightforward to show that B
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is actually spacelike and r = 0 on B. Similarly, we might a priori have an incoming null component of the

boundary arising from i+. But using the good monotonicity properties and the information that we have on

H+ for this matter model, we see this is not possible.

According to the above discussion we have that the quotient spacetime obtained from a solution of the

Einstein scalar field equations in spherical symmetry has the boundary:

∂Q+ = C+
0 ∪ I+ ∪ i+ ∪ B ∪ B0 ∪ bΓ ∪ Γ.

We note that we might have B = ∅ or B0 = {bΓ}. In general the Penrose diagram of such spacetimes is:

bΓ

i+

Γ

C+
0

H

I+

B0
B

We now prove a simple result that will be useful later:

Lemma 1. Suppose that bΓ 6= i+, and consider the incoming null hypersurface C−0 := {v = vbΓ}∩Q+. Then

r −→ 0 as u −→ ubΓ on C−0 .

Proof. Using the fact that r|Γ = 0 and ∂u∂vr ≤ 0 we get:

r(u, vbΓ) =

∫ vbΓ

u

∂vr(u, v)dv ≤
∫ vbΓ

u

∂vr(0, v)dv −→ 0 as u −→ ubΓ .

3 Bounded Variation Solutions

An important principle when dealing with the initial value problem is that one should always work with

a class of solutions for which we have well-posedness. In our situation, this should be the case both for

solutions with naked singularities and for their perturbation to nearby solutions without naked singularities.

So far, the discussion in the previous sections was in the class of smooth solutions, for which we have indeed

well-posedness. While we expect the Weak Cosmic Censorship to hold for smooth solutions as well, we will
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allow for a rougher class of solutions, that of solutions of bounded variation. We will prove the Weak Cosmic

Censorship for absolutely continuous initial data, which is contained in the class of bounded variation data.

This approach is successful since the mechanism of instability of naked singularities is easier to excite in this

rougher class of solutions. This section is based on Christodoulou’s work in [4].

We prescribe characteristic initial data for the Einstein scalar field equations in spherical symmetry on

a complete null outgoing hypersurface C+
0 . The double null coordinates are fixed by the conditions u = 0,

v = 2 arctan r on C+
0 , and u = v on Γ.

Recall that the Einstein scalar field equations in spherical symmetry for the functions (r,Ω, φ) are the

system of equations (2) − (5) and (9). We remark that the Gauss curvature of Q+, viewed as a surface in

the spacetime Q+ × S2, is:

KQ+ = 4Ω−2∂u∂v log Ω.

A simple computation shows that equation (4) is implied by (2), (3), (5) and (9). We set aside equation (4)

for now, and rewrite the remaining equations in a more convenient form.

Consider the system of equations for (r,Ω, φ):

λ = ∂vr, ν = ∂ur (10)

θ = r∂vφ, ζ = r∂uφ (11)

α = ∂v(rφ) = θ + φλ, β = ∂u(rφ) = ζ + φν (12)

m =
r

2
(1 + 4Ω−2∂ur∂vr), µ =

2m

r
(13)

∂uλ =
µ

1− µ
· λν
r

(14)

∂vν =
µ

1− µ
· λν
r

(15)

2ν∂um = (1− µ)ζ2 (16)

2λ∂vm = (1− µ)θ2 (17)

∂uθ +
λζ

r
= 0 (18)

∂vζ +
νθ

r
= 0 (19)

∂uα = φ∂uλ (20)

∂vβ = φ∂vν (21)

This system is equivalent to the Einstein scalar field equations in spherical symmetry. With the notation

introduced by (10)− (13) we have that (14), (15) are equivalent to (5), equations (16), (17) are equivalent to

Raychaudhuri’s equations (2), (3), and equations (18)− (19) are equivalent to the wave equation (9). Using

(12), we can rewrite equations (18)− (19) as (20)− (21).
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We consider the boundary conditions r|Γ = 0, m|Γ = 0. Initial data to the characteristic initial value

problem is given by (r,Ω, φ) on C+
0 . Recall that we already set r = tan 1

2v on C+
0 . We prescribe the function

φ on C+
0 , and by a translation φ −→ φ + c we can take φ(0, 0) = 0. By the regularity of the initial data we

have that (λ+ ν)(0, 0) = 0 and µ(0, 0) = 0, which gives Ω(0, 0) = 1. Using equation (2) on C+
0 , we obtain Ω

on C+
0 . Thus, with our choice of coordinates we only need to prescribe φ on C+

0 .

Given a globally hyperbolic region U ⊂ Q+, we introduce the following notation:

D(u, v) =
{

(ũ, ṽ) ∈ U : ũ ∈ [u, v), ṽ ∈ (ũ, v]
}

a∗ = sup
{
u : ∃v > u, (u, v) ∈ U

}
Definition 5. A triple (r,Ω, φ) defined in a globally hyperbolic region U is a solution of bounded variation

to the Einstein scalar field equations in spherical symmetry if it satisfies equations (10)− (21) and:

1. infU ν > −∞, infD(0,a) λ > 0 for any a ∈ (0, a∗)

2. λ is of BV on each C+(u), uniformly in u and ν is of BV on each C−(v), uniformly in v

3. for all a ∈ [0, a∗), we have limε−→0+(λ+ ν)(a, a+ ε) = 0

4. φ is AC on each C+(u), with TV bounded uniformly in u and φ is AC on each C−(v), with TV bounded

uniformly in v

5. for all a ∈ [0, a∗), we have:

lim
ε−→0+

sup
0<δ≤ε

TV{a−δ}×(a−δ,a)[φ] = 0, lim
ε−→0+

sup
0≤δ<ε

TV(a−ε,a−δ)×{a−δ}[φ] = 0

lim
ε−→0+

sup
0<δ≤ε

TV(a,a+δ)×{a+δ}[φ] = 0, lim
ε−→0+

sup
0≤δ<ε

TV{a+δ}×(a+δ,a+ε)[φ] = 0

6. θ is of BV on each C+(u), uniformly in u and ζ is of BV on each C−(v), uniformly in v

7. for all a ∈ [0, a∗), we have limε−→0+(α+ β)(a, a+ ε) = 0.

Remark 1. In condition 1) in the above definition we only ask that λ is positive in the causal past of Γ in

order to allow for BV solutions with trapped surfaces. Conditions 3), 5) and 7) are boundary conditions at

the center which hold by default for more regular solutions (e.g. smooth solutions).

Remark 2. Given (f, g) functions on U , we denote by A(U)[f, g] the area of the image of U by the map

(u, v) 7→ (f(u, v), g(u, v)). If f, g are BV functions, the expression in terms of the Jacobian is interpreted as a

Stieltjes integral. One obtains that for globally hyperbolic developments of BV data the areas A(D(0, a))[λ, φ],

A(D(0, a))[ν, φ], A(D(0, a))[φ, α/λ], and A(D(0, a))[φ, β/ν] are finite for any a ∈ (0, a∗).

Remark 3. For a solution of bounded variation we have that the Gauss equation (4) holds in the sense of

measures on Q+.
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The results in Proposition 1 and Proposition 2 hold for BV solutions as well. Moreover, one can prove that

the following boundary conditions hold: limv−→u+ θ(u, v) = 0, limu−→v− ζ(u, v) = 0 and limv−→u+ µ(u, v) =

limu−→v− µ(u, v) = 0.

Define the function κ = λ
1−µ , and note that in R∪ T we have κ > 0 and:

∂uκ =
θ2

ν
· κ (22)

Thus, κ is globally defined and κ > 0. It is useful to also write down the following equations, where (23) and

(26) only make sense when λ 6= 0 :

∂v
ν

1− µ
=
θ2

rλ
· ν

1− µ
(23)

∂uµ =
1

r

[
(1− µ)

ζ2

ν
− µν

]
(24)

∂vµ =
1

r

[
(1− µ)

θ2

λ
− µλ

]
(25)

∂u
α

λ
= − θ

λ
· µ

1− µ
· ν
r

(26)

∂v
β

ν
= − ζ

ν
· µ

1− µ
· λ
r

(27)

We want to establish well-posedness in the class of BV solutions. The following uniqueness result holds:

Theorem 4 (Uniqueness). Consider two BV solutions (r1,Ω1, φ1) and (r2,Ω2, φ2) defined in the globally

hyperbolic regions U1, respectively U2. If the solutions have the same initial data on C+
0 , they coincide in the

globally hyperbolic region U1 ∩ U2.

According to the above discussion, to pose characteristic initial data we only need to prescribe φ on C−0 .

In the case of smooth solutions it is enough to prescribe α on C−0 , which we can integrate to obtain φ. By a

density argument it is sufficient to prescribe α on C−0 for BV solutions as well. We have the following local

existence result:

Theorem 5 (Local existence). For any initial data α0 ∈ BV
(
(0, vI+)

)
there exists δ > 0 and a BV solution

to the initial value problem defined in
{

(u, v) : u ∈ [0, δ), v ∈ (u, vI+)
}
.

The proof is done using an approximation by smooth solutions. The key element is the area estimates.

These replace the traditional energy estimates, and are adapted to the low regularity of the solution. One

controls the areas A[λ, φ], A[ν, φ], A[φ, α/λ], and .A[φ, β/ν] by the BV norm of the initial data, which allows

a limiting argument. A very similar proof can be done to obtain local existence for the characteristic initial

value problem with data on {u0} × [v0, v1] ∪ [u0, u1]× {v0}. Thus, we have local well-posedness in the class

of BV solutions. We now prove an extension principle similar to that in Theorem 3:
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Theorem 6. Consider a BV solution defined in the globally hyperbolic region U . Let p = (a, V ) ∈ U\U ,
such that p /∈ Γ and V < vI+ . Suppose that there exists q = (a0, b) ∈

(
I−(p) ∩ U

)
\{p} such that the region

D =
(
J+(q) ∩ J−(p)

)
\{p} satisfies D ⊂ U , D ∩ Γ = ∅ and infD r > 0. Then the solution can be extended to

have (a, V ) ∈ U .

Proof. We begin by giving a brief outline of the strategy of the proof. The idea is to approximate the BV

initial data by smooth initial data. For any ε > 0 small enough, each smooth solution can be extended to a

globally hyperbolic region where rn ≥ ε. We control the pointwise and BV norms uniformly in terms of the

pointwise and BV norms of the initial data. We then make a limiting argument to obtain a BV solution in

a globally hyperbolic region with r ≥ ε. In particular, this will extend our initial BV solution to D ∪ {p}.
We notice that D = [a0, a] × [b, V ]\{(a, V )}. Since (a0, V ) ∈ U , there exists V1 ∈ (V, vI+) such that

{a0} × [b, V1] ⊂ U . We approximate the BV initial data induced on {a0} × [b, V1] ∪ [a0, a] × {b} by smooth

initial data which is uniformly bounded in the C0 and BV norms. Consider ε > 0 small enough, such that

infD r > 2ε and rn > 2ε on {a0}× [b, V1]∪ [a0, a]×{b} for all n. We use local well-posedness and the extension

principle for smooth solutions from section 2. We get that for every n there exists vε,n(a) ∈ (b, V1] with the

property that the smooth solution (rn,Ωn, φn) can be extended to [a0, a] × [b, vε,n(a)) such that rn ≥ ε in

this region, and if vε,n(a) < V1 then limv−→vε,n(a)− rn(a, v) = ε.

We now prove that each smooth solution is uniformly bounded in the pointwise and BV norms on

[a0, a]× [b, vε,n(a)) in terms of the pointwise and BV norms on {a0}× [b, vε,n(a))∪ [a0, a]×{b}. The pointwise
bounds are proved in [4]. Then, the pointwise bounds for θn, ζn imply that TV [φn(u, ·)], TV [φn(·, v)] are

uniformly bounded. We use the equations for ∂uνn and ∂uβn obtained by integrating the equations for ∂v∂uνn
and ∂v∂uβn, and we get TV [νn(·, v)], TV [βn(·, v)] are uniformly bounded. Then, we use the equation:

∂u∂vκn = ∂vκn ·
ζ2
n

rnνn
+ κn∂v

ζ2
n

rnνn

and Gronwall’s lemma to obtain that |∂vκn| is uniformly bounded, which gives TV [λn(u, ·)] is uniformly

bounded. In particular, this implies A[λn, φn] is bounded. Finally, by the area estimate:

TV [αn(u, ·)] ≤ TV [αn(0, ·)] + sup |φn|TV [λn(u, ·)] +A[λn, φn],

we conclude that TV [αn(u, ·)] is also bounded.

So far we obtained a sequence of smooth solutions (rn,Ωn, φn) defined on [a0, a] × [b, vε,n(a)), which

is pointwise and BV uniformly bounded. We define vε(a) = lim sup vε,n(a), and we remark that vε(a) > b

because |λn| is uniformly bounded and rn > 2ε on [a0, a] × {b}. Similarly to the proof of Theorem 5, one

can show that a subsequence of (rn,Ωn, φn) converges to a BV solution (r,Ω, φ) defined on [a0, a]× [b, vε(a)).

Moreover, since rn ≥ ε we have that r ≥ ε. If vε(a) < V1, we have vε,n(a) < V1 for n large enough,

so limv−→vε,n(a)− rn(a, v) = ε. Since |λn| is uniformly bounded, we also get limv−→vε(a)− r(a, v) = ε. Thus,

infD r > 2ε implies that vε(a) > V . In the view of the uniqueness theorem for BV solutions, we extended our

original BV solution to [a0, a]× [b, vε(a)) ⊃ D ∪ {p}.
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We state an extension principle at the center, which is essential in the proof of the Weak Cosmic

Censorship:

Theorem 7. Given initial data α0 ∈ AC(0, V ), we consider the solution (r,Ω, φ) to the initial value problem.

Let v0 < V be such that for all v < v0 we have D(0, v) ⊂ Q+. If µ(u, v0) −→ 0 as u −→ v0−, there exists δ > 0

such that D(0, v0 + δ) ⊂ Q+.

Remark 4. Unfortunately, this result does not apply if the initial data is only assumed to be BV. This can

be seen in the example from [4] of a scale invariant solution with k2 > 1, which is flat in the causal past of

C−0 , but has a spacelike singular boundary B arising from bΓ.

Remark 5. We mention an interesting continuity property of BV solutions. If α(u0, ·) is continuous at

v, then α(u, ·) is continuous at v for all u such that (u, v) ∈ U . Thus, α is either continuous across the

hypersurface C−(v), or it jumps across it along all outgoing null cones. Similar results hold for λ, θ, β, ν

and ζ. We also obtain that for any v ∈ (0, vI+) such that λ(0, ·), α(0, ·) and θ(0, ·) are continuous at v, all

the equations with a ∂v derivative in (10)− (21) hold pointwise on C−(v), and similarly on C+(u).

4 Formation of Trapped Surfaces

We mentioned in the introduction that the Incompleteness Theorem of Penrose assumes the existence of a

trapped surface in the initial data. However, we are interested in collapse of regular initial data. Thus, it is

essential to have a criterion for the formation of trapped surfaces based on information on initial data. The

following is the main result of [3]:

Theorem 8. On the outgoing null cone C+
0 we consider two spheres S1,0 and S2,0, with S2,0 to the exterior

of S1,0. We define:

δ0 :=
r2,0

r1,0
− 1, η0 =

2(m2,0 −m1,0)

r2,0
.

We denote the incoming future null cones through S1,0 and S2,0 by C−1 and C−2 . Assume that r −→ 0 along

C−1 . There exist constants c1, c2 > 0 such that if:

δ0 ≤ c0, η0 > c1δ0 log

(
1

δ0

)
,

then there exists an outgoing null cone C+
∗ such that the sphere S2∗ = C+

∗ ∩ C−2 is marginally trapped.

Intuitively, this criterion states that if the mass within an annular region bounded by two spheres on C+
0

is large compared to the dimensions of the region, then a trapped surface will form in evolution. We refer

the reader to [3] for a proof of the theorem.
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Remark 6. As stated in [3], the theorem assumes the existence of a sphere S′2 = C ′+ ∩ C−2 such that:

r′2 =
3δ0

1 + δ0
r2,0,

which can be arbitrarily small. However, when applying this theorem we do not want to assume smallness of r

on C−2 . This can be avoided by noticing that r −→ 0 along C−1 implies the existence of a sphere S′1 = C ′+∩C−1
such that r′1 = 2δ0r1,0. Now, the condition ∂u∂vr ≤ 0 and the extension principle give a sphere S′2 as desired.

Remark 7. In addition to using the theorem as a criterion for the formation of trapped surfaces, we will also

use it as part of the contradiction argument when proving the Weak Cosmic Censorship. Thus, if we assume

that the spacetime has no marginally trapped region, the contrapositive of the theorem gives us an estimate

for the mass contained within a small annular region to the exterior of C−1 .

5 Existence of Trapped Surfaces implies Future Null Infinity is

Complete

We recall that the statement of Weak Cosmic Censorship is that, generically, far away observers do not see

singularities, i.e. future null infinity I+ is complete. A general definition of this is given in [7] for maximal

developments of asymptotically flat initial data, without reference to the conformal compactification of the

spacetime (and without assuming spherical symmetry). Following [8], we translate this definition to the

spherically symmetric case into a simpler condition.

For the rest of the section we assume that the spacetime contains a (marginally) trapped surface, so

A ∪ T 6= ∅. We define the event horizon as in section 2, and we write H = Q+ ∩ {u = uH}.
Fix an outgoing null ray {u = u0} with u0 < uH. The geodesic equation for incoming null geodesics is:

ü+ ∂u log Ω2(u̇)2 = 0.

We integrate this to obtain the vector field:

Ω2(u0, v)

Ω2(u, v)
· ∂
∂u

=
∂vr(u0, v)

∂vr(u, v)
· 1− µ(u, v)

1− µ(u0, v)
· ∂ur(u0, v)

∂ur(u, v)
· ∂
∂u

which is tangent to all incoming null geodesics, and parallel along the outgoing null ray {u = u0}. The affine

length of these incoming null geodesics is:

l(v) =

∫ uH

u0

∂vr(u, v)

∂vr(u0, v)
· 1− µ(u0, v)

1− µ(u, v)
· ∂ur(u, v)

∂ur(u0, v)
du,

where the fact that the affine length is zero on {u = u0} and that the vector field is parallel along the ray

{u = u0} are the necessary normalization conditions.

We say that the spherically symmetric maximal future Cauchy development (M, g) has a complete future

null infinity if in the quotient spacetime Q+ we have l(v) −→ ∞ as v −→ vI+ . The main result of [8] is the

following:
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Theorem 9. If A 6= ∅, then I+ is future complete.

We refer the reader to the original paper for the proof. We point out that a key result in the proof is

the Penrose-type inequality r ≤ 2Mf on H, which we mentioned in section 2. We also remark that the proof

in assumes that r ∈ C2(Q+), Ω, φ ∈ C1(Q+), using the extension principle proved in [9]. In order to have

that the same proof works for a BV solution, we use the extension principle in Theorem 6.

Following the discussion in this section, we see that in order to prove the Weak Cosmic Censorship it

suffices to show:

Conjecture 4. For generic asymptotically flat initial data for the Einstein scalar field equations in spherical

symmetry, the quotient spacetime Q+ of the maximal globally hyperbolic future Cauchy development satisfies:

• Q+ disperses, i.e. bΓ = i+, or

• A 6= ∅.

6 Instability of Naked Singularities

In this section we present the proof of the Weak Cosmic Censorship, following [6]. The main idea is that

spacetimes that do not disperse have an instability mechanism at the center along C−0 , namely the blue-shift

effect. This forces solutions with naked singularities to be finely tuned, and in particular unstable.

We consider initial data α0 ∈ AC
(
[0, vI+)

)
∩ L1

(
[0, vI+)

)
. If bΓ = i+ then Q+ = R, and the fact that

C+
0 is complete implies that I+ is future complete. According to the section 5, if A 6= ∅, we again have that

I+ is future complete. For the rest of the section we assume that bΓ 6= i+ and A = ∅.
We remark that so far the double null coordinates (u, v) were fixed by taking v = 2 arctan r on u = 0

and u = v on Γ. By Lemma 1, we know that r −→ 0 as u −→ ubΓ− along C−0 , so we can change the coordinate

u to have u = −2r on C−0 . Let a be the radius of the sphere C−0 ∩C
+
0 , and set a0 = 2 arctan a. We translate

the coordinate v by a0 in order to have C−0 = {v = 0} and C+
0 = {u = −2a}. These choices fix the double

null coordinates (u, v), but we now do not have Γ = {u = v} anymore. However, the new coordinates are

adapted for our problem.

Remark 8. We claim that BV solutions have the same properties in the new coordinates. For the purpose

of this remark, denote the new coordinates by ũ = −2r(u, a0), ṽ = v − a0. The only functions that change

are ν̃(u, v) = −ν(u, v)/2ν(u, a0), ζ̃(u, v) = −ζ(u, v)/2ν(u, a0), β̃(u, v) = −β(u, v)/2ν(u, a0), and Ω̃2(u, v) =

−Ω2(u, v)/2ν(u, a0). Since infU ν > −∞ and supU ν < 0 we have that (ũ, ṽ) define global coordinates on

U and conditions 1), 2), 4), 5) and 6) in the definition of a BV solution still hold. Moreover, we still have

the monotonicity properties in Proposition 1, 2 and the boundary conditions θ = 0, µ = 0 at Γ ∩ C+ and

ζ = 0, µ = 0 at Γ ∩ C−. Thus, we only need to adjust conditions 2) and 7). The new boundary conditions

are obtained by formally taking derivatives of r|Γ = 0 and (rφ)|Γ = 0 along Γ = {u(ũ, ṽ) = v(ũ, ṽ)}.
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Using equations (14) and (18) we obtain along C−0 :

∂u

(
θ

λ

)
= − 1

u
· µ

1− µ
· θ
λ
− 1

u
· ζ
ν
. (28)

We define the integrating factor:

γ(u) = −
∫ u

−2a

1

u′
· µ

1− µ
(u′, 0)du′, (29)

which is a physical measure of the blue-shift. The next two results support this interpretation:

Lemma 2. We denote κ = 1
1−µ . Then for all u ∈ [−2a, 0) :

κ(u, 0) ≤ 2κ(−2a, 0)eγ(u)

Proof. Since m is non-increasing along C−0 we get:

µ(u, 0) ≤ µ(−2a, 0) · a

r(u, 0)
≤
(

1− 1

κ(−2a, 0)

)
· a

r(u, 0)

Thus, if r(u, 0) ≥ a ·
(
1 − 1

κ(−2a,0)

)
·
(
1 − 1

2κ(−2a,0)

)−1
, we have that κ(u, 0) ≤ 2κ(−2a, 0). Also for any

u′ ∈ [−2a, u] we have:

κ(u′, 0)− 1 =
µ(u′, 0)

1− µ(u′, 0)
≥

µ(u, 0) · uu′
1− µ(u, 0) · uu′

.

This implies:

γ(u) ≥ −
∫ u

−2a

1

u′
·

µ(u, 0) · uu′
1− µ(u, 0) · uu′

du′ = log

(
1 + u

2aµ

1− µ

)
> log

(
1− r

a

1− µ(u, 0)

)
.

We conclude that if r(u, 0) < a ·
(
1− 1

κ(−2a,0)

)
·
(
1− 1

2κ(−2a,0)

)−1
, we have that

κ(u, 0) <
eγ(u)

1− r
a

<
(
2κ(−2a, 0)− 1

)
eγ(u).

Proposition 3. If γ is bounded, then µ(u, 0) −→ 0 as u −→ 0− .

Proof. As in the proof of the previous lemma, we have for any u1 < u2 ∈ [−2a, 0) :

γ(u2)− γ(u1) ≥ −
∫ u2

u1

1

u′
·

µ(u2, 0) · u2

u′

1− µ(u2, 0) · u2

u′
du′ = log

(
1− u2

u1
µ(u2, 0)

1− µ(u2, 0)

)
.

This implies:

µ(u2, 0) ≤ eγ(u2)−γ(u1) − 1

1− u2

u1

.

Taking u1 = 2u2, we see that γ bounded implies that γ(u2)− γ(u1) −→ 0 as u2 −→ 0− .
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Corollary 1. Consider a spacetime Q+ which is the maximal globally hyperbolic future development of initial

data α0 ∈ AC
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
. If bΓ 6= i+, we have that the blue-shift γ is unbounded.

Proof. We use the extension principle in Theorem 7 and the fact that Q+ cannot be extended at the center

past C−0 .

Since r −→ 0 along C−0 and A = ∅, we can apply the contrapositive of Theorem 8 to get a necessary

condition to not form trapped surfaces. For any ε > 0, c > 0 we consider the regions:

Rε =
{

(u, v) ∈ Q+ : u ∈ [−2a, 0), v ∈ [0, ε]
}
,

Rcε =

{
(u, v) ∈ Q+ : u ∈ [−2a, 0), v ∈ [0, ε],

r(u, v)

r(u, 0)
≤ ec

}
.

We also define the function2:

s(u, v) = log

(
r(u, v)

r(u, 0)

)
,

and we note that s = 0 on C−0 , and s > 0 for v > 0. With this notation we have for any (u, v) ∈ Rε:

δ(u, v) =
r(u, v)

r(u, 0)
− 1 = es − 1 (30)

η(u, v) =
2
(
m(u, v)−m(u, 0)

)
r(u, v)

= µ(u, v)− µ(u, 0) · e−s (31)

By Theorem 8, we get that there exist constants c0, c1 such that for any (u, v) ∈ Rε, if δ(u, v) ≤ c0 then:

η(u, v) < c1δ(u, v) log
1

δ(u, v)
,

or otherwise a trapped surface would form. Thus, we get that there exist (different) constants c0, c1 > 0 such

that:

η(u, v) < c1s(u, v) log
1

s(u, v)
∀ (u, v) ∈ Rc0ε (32)

To summarize, we see that imposing the condition that I+ is future incomplete in Q+, we obtain the

following restrictions:

• the blue-shift γ is unbounded along the incoming null hypersurface C−0 ,

• condition (32) holds in a small region Rc0ε in the exterior of C−0 .

Remark 9. We provide a heuristic argument for why one should expect to have the additional estimate in

(32). Firstly, consider the linear wave equation on a fixed background spacetime with a naked singularity.

We claim that using the infinite blue-shift on C−0 , one obtains that the energy of the solution on Rε ∩C(u)+

blows up as u −→ 0− . We now imagine that we start with a spacetime with a naked singularity and we "add"
2In [6] s is a coordinate, but we prefer to do everything in double null coordinates (u, v).
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the nonlinear effects from equations (14)− (19). We want to apply the idea from the linear case to the wave

equation (18). However, the nonlinear effects may alter the metric so much that the solution may not be

defined in the diamond [−2a, 0)× [0, ε] anymore. In particular, a trapped surface could form arbitrarily close

to bΓ. Thus, in order to use the blue-shift effect as we did in the linear case, we need an extra smallness

assumption that ensures the metric is close to that of a naked singularity spacetime. Therefore, we interpret

condition (32) as the assumption needed so that we can use the "linear blue-shift effect" to study (18).

6.1 An Instability Theorem

In this section we shall make use of the blue-shift to prove that unless the solution satisfies a restrictive

property, a trapped surface forms arbitrarily close to C−0 , contradicting (32). In this sense we say that the

blue-shift is the instability mechanism for the Weak Cosmic Censorship problem.

To integrate equation (28), we also define the integral:

I(u) =

∫ u

−2a

1

u′
· ζ
ν

(u′, 0) · e−γ(u′)du′. (33)

We obtain along C−0 :
θ

λ
(u, 0) = eγ(u)

(
θ

λ
(−2a, 0)− I(u)

)
. (34)

We claim that this equation gives a very restrictive condition that our spacetime must satisfy in order

to allow for naked singularities, which is limu−→0− I(u) = θ
λ (−2a, 0). Indeed, if we assume the contrary, then

the fact that γ is unbounded implies that θ
λ (u, 0) is unbounded. It is then reasonable to expect that θ

λ (u, ·)
is large on v ∈ [0, ε), for some u large enough. However, this will contradict (32), because by (16) we have:

η(u, v) =
1

r(u, v)

∫ v

0

1

κ
· θ

2

λ
(u, v′)dv′ (35)

We make this idea precise in the following instability result. This theorem is the key result in [6]:

Theorem 10. Suppose that bΓ 6= i+ and A = ∅. Then:

lim
u−→0−

I(u) =
θ

λ
(−2a, 0).

Proof. We suppose that either I does not tend to a finite limit as u −→ 0−, or that:

lim
u−→0−

I(u) 6= θ

λ
(−2a, 0) (36)

We notice that we have no a priori information on the integral I(u). Thus, considering the limits:

l+ = lim sup
u−→0−

I(u) and l− = lim inf
u−→0−

I(u),
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we have −∞ ≤ l− ≤ l+ ≤ ∞, and one needs to consider all the possible cases. We restrict to the situation

where I(u) is bounded, because the cases where |l+| =∞ or |l−| =∞ are similar. We have that θ
λ (u, 0)e−γ(u)

is also bounded, so we set:

b = sup
u∈[−2a,0)

∣∣∣∣ θλ (u, 0)e−γ(u)

∣∣∣∣.
If −∞ < l− = l+ = l <∞, we have that limu−→0− I(u) = l and l 6= θ

λ (−2a, 0).We set h =
∣∣ θ
λ (−2a, 0)−l

∣∣.
Then there exists U ∈ [−2a, 0) such that |I(u)− l| ≤ 2h

3 for all u ∈ [U, 0). This implies:∣∣∣∣ θλ (u, 0)

∣∣∣∣ = eγ(u)

∣∣∣∣ θλ (−2a, 0)− I(u)

∣∣∣∣ ≥ h

3
eγ(u) ∀u ∈ [U, 0).

If −∞ < l− < l+ <∞, we set h = l+ − l−. We get that:

max

{∣∣∣∣ θλ (−2a, 0)− l−
∣∣∣∣, ∣∣∣∣ θλ (−2a, 0)− l+

∣∣∣∣} ≥ h

2
,

so there exists a sequence un −→ 0− such that
∣∣ θ
λ (−2a, 0)− I(un)

∣∣ ≥ h
3 , which implies:∣∣∣∣ θλ (un, 0)

∣∣∣∣ = eγ(un)

∣∣∣∣ θλ (−2a, 0)− I(un)

∣∣∣∣ ≥ h

3
eγ(un).

Therefore, in the cases when I(u) is bounded, we have a sequence un −→ 0− such that:∣∣∣∣ θλ (un, 0)

∣∣∣∣ ≥ h

3
eγ(un) (37)

Since we know that θ
λ is unbounded on C−0 , according to our outlined plan we next want to show that it is

large enough in a small neighborhood of C−0 . To measure this we consider the function:

ψ(u, v) = e−γ(u)

(
θ

λ
(u, v) · r(u, v)

r(u, 0)
− θ

λ
(u, 0)

)
(38)

We also define:

ω(u, v) =
uν

r
(u, v)

(
κ(u, v)− 2

)
−
(
κ(u, 0)− 2

)
,

ρ(u, v) = e−γ(u)

(
ω(u, v) · θ

λ
(u, 0) + ξ(u, v)

)
,

where we have that:

ξ(u, v) =

∫ v

0

νθ

r
(u, v′)dv′

satisfies −ζ(u, v) = −ζ(u, 0) + ξ(u, v)/2 by equation (19). With these definitions, the wave equation (18)

along C−0 and C−(v) implies:

− u∂uψ = ωψ + ρ (39)

We want to use (37) and (38) to get that θ
λ is bounded from below. Thus, we need to bound ψ. According

to (39) we firstly need estimates on ω, ξ, ρ.
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Step 1. Estimates for ω, ξ, and ρ.

We remark that in the process of proving estimates we also need to determine the small region in the

exterior of C−0 where the estimates hold. We denote the conditions:

(u, v) ∈ Rc0ε (C1)

s(u, v) log
1

s(u, v)
≤ e−γ(u)

4c1κ(−2a, 0)
(C2)

Thus, if (C1)− (C2) hold for (u, v) we have:

κ(u, v) =
1

1− µ(u, v))
=

1

1− µ(u, 0)e−s − η(u, v)
≤ 1

1
κ(u,0) − η(u, v)

≤ 1
e−γ

2κ(−2a,0) − c1s log 1
s

,

where we used Lemma 2 and (32). Then, by (C2) we obtain that if (C1)− (C2) hold for (u, v):

κ(u, v) ≤ 4κ(−2a, 0)eγ(u). (40)

Note that since c0 < 1/e and c1 > 1 we get that 4κ(−2a, 0)eγ(u)s ≤ 1/c1 and µ(u, v) ≤ c1 log(1/s). Also:

κ(u, v)− κ(u, 0) = κ(u, v)κ(u, 0)
(
µ(u, v)− µ(u, 0)

)
= κ(u, v)κ(u, 0)

[
η(u, v)− µ(u, 0)(1− e−s(u,v))

]
We get that if (C1)− (C2) hold, then:

|κ(u, v)− κ(u, 0)| ≤ 8κ(−2a, 0)2e2γ(u)s log
1

s
.

Using equation (15) and the fact that ν = − 1
2 on C−0 we get:

log(−2ν) ≤
(
4κ(−2a, 0)eγ(u) − 1

)
log

r(u, v)

r(u, 0)
,

which implies that:
uν

r
(u, v) ≤ exp

(
4κ(−2a, 0)eγ(u)s(u, v)

)
≤ e1/c1 . (41)

Using the inequality x− 1 ≤ c−1
log c log x whenever x ∈ [1, c], the above also gives:

uν

r
(u, v)− 1 ≤ 4c1(e1/c1 − 1)κ(−2a, 0)eγ(u)s(u, v).

But since λ > 0 we also get from (15) that:

1− uν

r
(u, v) ≤ 1 +

u

2r
(u, v) = 1− e−s ≤ s.

Thus, we proved: ∣∣∣∣1− uν

r
(u, v)

∣∣∣∣ ≤ 4c1e
1/c1κ(−2a, 0)eγ(u)s(u, v) (42)

We can write:

ω(u, v) =
uν

r
(u, v)

(
κ(u, v)− κ(u, 0)

)
+

(
1− uν

r
(u, v)

)
·
(
2− κ(u, 0)

)
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We get that if (C1)− (C2) hold, then for c2 = 16c21e
1/c1 :

|ω(u, v)| ≤ c2κ(−2a, 0)2e2γ(u)s(u, v) log
1

s(u, v)
(43)

By Cauchy-Schwarz and (17), we have that:

ξ2 ≤
∫ v

0

λ

r2
(u, v′)dv′

∫ v

0

2∂vm ·
ν2

1− µ
(u, v′)dv′ ≤ (es − 1)η

ν2

1− µ
(u, v),

where we also used (15) and (23). It is straightforward to see that if (C1)− (C2) hold, then using (32), (40)

and (41) we get:

|ξ(u, v)| ≤ c2κ(−2a, 0)2e2γ(u)s(u, v) log
1

s(u, v)
(44)

Using (43) and (44) in the definition of ρ, we get:

|ρ(u, v)| ≤ c2κ(−2a, 0)2(b+ 1)e2γ(u)s(u, v) log
1

s(u, v)
(45)

Step 2. Estimates for ψ.

Recall that in order to show that θ
λ is bounded from below, we need estimates for ψ. So far we know

that ψ satisfies the transport equation (39), and we have the estimates (43), (45) on the other terms in the

equation. Thus, if (C1)− (C2) hold, then:

∂u|ψ| ≤
1

−u
c2κ(−2a, 0)2e2γ(u)s(u, v) log

1

s(u, v)

(
|ψ|+ b+ 1

)
We consider the integrating factor:

ϕ(u, v) = c2κ(−2a, 0)2

∫ u

−2a

1

−u′
e2γ(u′)s(u′, v) log

1

s(u′, v)
du′,

and use the previous bound to get ∂u
(
|ψ|e−ϕ

)
≤ −(b+ 1)∂ue

−ϕ. Integrating this we obtain:

|ψ(u, v)| ≤ |ψ(−2a, v)|eϕ(u,v) + (b+ 1)
(
eϕ(u,v) − 1

)
, (46)

provided that (C1)− (C2) hold for all (u′, v) with u′ ∈ [−2a, u]. To obtain a bound for ψ, we firstly need to

estimate ϕ. For this we estimate s(u, v).

Recall that by (32) we have µ(u, v) ≤ µ(u, 0) + c1s log 1
s , provided that (C1) holds. This implies that

µ(u, v) ≤ 1
3 + 2

3µ(u, 0), if we also assume c1s log 1
s ≤

1
3κ(u,0) . Using Lemma 2, this condition is implied by:

s(u, v) log
1

s(u, v)
≤ e−γ(u)

6c1κ(−2a, 0)
(C3)

We note this is strictly stronger than (C2). Thus, if (C1)− (C3) hold, then:

κ(u, v) ≤ 3

2
κ(u, 0) (47)
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From (15) we get that if (C1)−(C3) hold for all (u′, v) with u′ ∈ [−2a, u], then log(−2ν)(u′, v) ≥ ( 3
2κ(u′, 0)−

1)s(u′, v). Using this in −u∂us = 1− νe−s we obtain:

∂us(u
′, v) ≥ − 1

u′
+

1

u′
e( 3

2κ(u′,0)−2)s(u′,v) (48)

This lower bound on ∂us allows us control s(u′, v) by s(u, v) when u′ < u. Indeed, after some work one

obtains by integrating (48) that:

s(u′, v) ≤ 2s(u, v)

(
u

u′

)1/2

exp
3

2

(
γ(u)− γ(u′)

)
, (49)

provided that (C1)− (C3) hold for all (u′, v) with u′ ∈ [−2a, u], and:

s(u, v) ≤ e−
3
2γ(u)

2c3κ(−2a, 0)
, (C4)

holds at (u, v), where c3 = 19
2 (e− 2). Using the inequality x1/2 log 1

x ≤
2
e for x > 0 small, we get:

s(u′, v) log
1

s(u′, v)
≤ 23/2

e
s(u, v)1/2

(
u

u′

)1/4

exp
3

4

(
γ(u)− γ(u′)

)
This is the estimate we need in order to bound ϕ. We have that:∫ u

−2a

1

−u′
e2γ(u′)s(u′, v) log

1

s(u′, v)
du′ ≤ 23/2

e
s(u, v)1/2e2γ(u)

∫ u

−2a

1

−u′

(
u

u′

)1/4

du′ ≤ 27/2

e
s(u, v)1/2e2γ(u).

Therefore, we proved that for c4 = 27/2/e · c2, we have:

ϕ(u, v) ≤ c4κ(−2a, 0)2e2γ(u)s(u, v)1/2, (50)

provided that (C1)− (C3) hold for all (u′, v) with u′ ∈ [−2a, u], and (C4) holds at (u, v).

We now use inequality (46) to bound ψ. We introduce the condition:

s(u, v) ≤ min

(
log 2,

h

48(b+ 1)

)2
e−4γ(u)

c24κ(−2a, 0)4
(C5)

which together with the above assumptions implies that:

eϕ(u,v) ≤ 2, eϕ(u,v) − 1 ≤ 2ϕ(u, v) ≤ h

48(b+ 1)

Finally, we also assume that for some v0 < ε:

sup
v∈[0,v0]

|ψ(−2a, v)| ≤ h

48
(C6)

We get by (46) that if (C1)− (C3) hold for all (u′, v0) with u′ ∈ [−2a, u], (C4),(C5) hold at (u, v0) and (C6)

holds at v0, then:

|ψ(u, v0)| ≤ h

12
(51)
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Remark 10. If all conditions needed above hold, i.e. (C1) − (C3) hold for all (u′, v0) with u′ ∈ [−2a, u],

(C4),(C5) hold at (u, v0) and (C6) holds at v0, we say that "all conditions hold for (u, v0)" for brevity.

Step 3. Formation of a trapped surface

We set out to prove that θ
λ is large in a small region to the exterior of C−0 , expecting this will lead to

the formation of a trapped surface because of formula (35). We notice we can rewrite the definition of ψ as:

θ

λ
(u, v) · r(u, v)

r(u, 0)
=
θ

λ
(u, 0) + ψ(u, v)eγ(u).

Recall that θ
λ (u, 0) is large according to (37), as a direct consequence of the infinite blue-shift and the fact

that the problem is not finely tuned, i.e. condition (36). Moreover, we proved in the previous step that |ψ|
is small. Thus, θλ (u, 0) is the dominant term in the above, and we have that for a sequence un −→ 0−:∣∣∣∣ θλ (un, v0) · r(un, v0)

r(un, 0)

∣∣∣∣ ≥ h

4
eγ(un), (52)

if all conditions hold for (un, v0). We notice that ∂vs > 0, so the functions s, s log 1
s are increasing in v,

for s ≤ c0 small enough. Thus, if all conditions hold for (u, v0), then all conditions hold for (u, v), for all

v ∈ [0, v0]. We deduce that if all conditions hold for (un, v0), then for all v ∈ [0, v0]:∣∣∣∣ θλ (un, v) · r(un, v)

r(un, 0)

∣∣∣∣ ≥ h

4
eγ(un), (53)

This is the desired quantitative estimate of the fact that θ
λ is large in a small region to the exterior of

C−0 . We use it in (35) to get that for any v ∈ [0, v0]:

η(un, v) =
1

r(un, v)

∫ v

0

1

κ
· θ

2

λ
(un, v

′)dv′ ≥ r(un, 0)2

r(un, v)
· h

2

16
· e2γ(un)

∫ v

0

1

κ(un, v′)
· λ
r2

(un, v
′)dv′ ≥

≥ h2

64κ(−2a, 0)
· eγ(un) · r(un, 0)

r(un, v)

(
1− r(un, 0)

r(un, v)

)
≥ c5h

2

κ(−2a, 0)
· eγ(un) · s(un, v),

where c5 = 1
64 · e

−c0(1 − e−c0)/c0, and we used the fact that the function e−s(1 − e−s)/s is decreasing. We

want this to give that η is large enough so we can apply Theorem 8 to obtain that a trapped surface will

form. We take any constant c6 < c5/c1 and we assume that:

∃n ∈ N, v ∈ [0, v0], such that s(un, v) = exp

(
−c6h2eγ(un)

κ(−2a, 0)

)
(C7)

If all conditions hold for this (un, v), we have:

η(un, v) < c1s(un, v) log
1

s(un, v)
=

c1c6h
2

κ(−2a, 0)
· eγ(un) · s(un, v) < η(un, v),

so the lower bound that we obtained on η contradicts the condition to not form trapped surfaces (32).
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Step 4. Region to the exterior of C−0
We recall that in order to obtain the above contradiction, we assumed that certain conditions on r hold

in a small region to the exterior of C−0 . We assumed that (C7) holds, and for those n ∈ N, v ∈ [0, v0] we

have that (C1) − (C3) hold for all (u′, v) with u′ ∈ [−2a, u], (C4),(C5) hold at (u, v) and (C6) holds at v.

We now prove all this conditions are consistent.

By convention we have that α is right continuous on C+
0 , so ψ is also right continuous. For ε > 0 small

enough we have:

sup
v∈[0,ε)

|ψ(−2a, v)| ≤ h

48
,

so condition (C6) hold at any v0 ∈ [0, ε).

We prove that (C7) holds. Suppose that there exists N ∈ N such that for all n ≥ N :

s(un, v0) < Sn := exp

(
−c6h2eγ(un)

κ(−2a, 0)

)
.

Since γ(un) is unbounded, we get that for all n large enough conditions (C4) − (C5) hold at (un, v0). We

also have that conditions (C1)− (C3) hold at (un, v0). We define:

u∗ = inf
{
u ∈ [−2a, un] : (C1)− (C3) hold at (u′, v0) for all u′ ∈ [u, un]

}
All the necessary conditions to apply (49) on [u∗, un] hold, so we obtain:

s(u∗, v0) ≤ 2s(un, v0)

(
un
u∗

)1/2

exp
3

2

(
γ(un)− γ(u∗)

)
≤ 2s(un, v0) exp

3

2
γ(un)

We need to consider the following three cases:

• If u∗ = −2a. For all n large enough we obtain the contradiction:

s(un, v0) ≥ 1

2
s(−2a, v0)e−

3
2γ(un) > Sn.

• If at u∗ we have equality in (C1), so s(u∗, v0) = c0. For all n large enough we obtain the contradiction:

s(un, v0) ≥ 1

2
c0e
− 3

2γ(un) > Sn.

• If at u∗ we have equality in (C3) (note that (C2) is strictly weaker). We have that:

2

e
s(u∗, v0)1/2 ≥ s(u∗, v0) log

1

s(u∗, v0)
=

e−γ(u∗)

6c1κ(−2a, 0)
≥ e−γ(un)

6c1κ(−2a, 0)
.

For all n large enough we obtain the contradiction:

s(un, v0) ≥ 1

2
s(u∗, v0)e−

3
2γ(un) ≥

(
e

12
√

2c1κ(−2a, 0)

)2

e−
7
2γ(un) > Sn.
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Therefore, we proved that there exists an infinite subsequence un −→ 0− such that Sn ∈ [0, s(un, v0)]. We also

obtain a sequence vn ∈ [0, v0] such that Sn = s(un, vn). Thus, (C7) holds for all n large enough and vn.

Finally, we prove that for n large enough all conditions hold for (un, vn). Indeed, since γn is unbounded

we have that (C4),(C5) hold at (un, vn), and also that (C1)− (C3) hold at (un, vn). We define:

u∗ = inf
{
u ∈ [−2a, un] : (C1)− (C3) hold at (u′, vn) for all u′ ∈ [u, un]

}
We can apply (49) on [u∗, un] to get:

s(u∗, vn) ≤ 2s(un, vn)

(
un
u∗

)1/2

exp
3

2

(
γ(un)− γ(u∗)

)
≤ 2s(un, vn) exp

3

2
γ(un)

Taking n large enough we cannot have equality in any of (C1)− (C3), so we conclude that u∗ = −2a. Thus,

(C1)− (C3) hold at (u′, vn) for all u′ ∈ [−2a, un], so we proved that all conditions hold for (un, vn).

Remark 11. The conclusion of the theorem holds if we replace the condition that the data is AC with the

condition that the data is BV and γ is unbounded. However, since the extension principle in Theorem 7 only

holds for AC data, we can have a BV solution with γ bounded that cannot be extended to the future of C−0
at the center. In this case the instability mechanism we want to exploit is not present, so we cannot hope to

prove the Weak Cosmic Censorship conjecture for BV data with this approach.

6.2 Weak Cosmic Censorship

In the previous sections we saw that in order to allow for naked singularities, solutions must satisfy certain

restrictive properties. In particular, we have the following necessary conditions: bΓ 6= i+, A = ∅, γ(u) −→
∞ as u −→ 0−, and

lim
u−→0−

I(u) =
θ

λ
(−2a, 0).

To complete the proof of the Weak Cosmic Censorship, we want to prove that for generic integrable

absolutely continuous initial data the above conditions do not hold. In this section, we only prove that

integrable AC initial data can be perturbed in the integrable BV class to a solution with complete future

null infinity. We explain at the end what needs to be done to prove the Weak Cosmic Censorship.

The well-posedness result in the class of BV initial data implies that a solution with AC initial data is

determined by:

ϑ =
θ

λ

∣∣
u=−2a

∈ AC
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
.

We define the exceptional set E to consist of initial data ϑ ∈ AC
(
[−a0, vI+)

)
∩L1

(
[−a0, vI+)

)
such that

in the maximal globally hyperbolic future development we have that bΓ 6= i+ and A = ∅. Such a spacetime

has the Penrose diagram:
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bΓ

i+

Γ

C+
0

I+

B0

We prove the following:

Theorem 11. For any ϑ ∈ E there exists a one-dimensional linear subspace Πϑ ⊂ BV
(
[−a0, vI+)

)
∩

L1
(
[−a0, vI+)

)
such that:

• The maximal development of any ϑ̃ ∈ Πϑ\{ϑ} has bΓ 6= i+ and A 6= ∅,

• ϑ 6= ϑ′ ∈ E implies Πϑ ∩Πϑ′ = ∅.

Proof. By Theorem 10 we know that ϑ ∈ E implies limu−→0− I(u) = θ/λ(−2a, 0) = ϑ(0). Let f : R −→ [0,∞) be

an integrable function, vanishing on (−∞, 0), such that f |[0,∞) is absolutely continuous and limv−→0+ f(v) = 1.

This function is BV but not AC on [−a0, vI+).

For any λ ∈ R we consider initial data:

ϑ̃λ = ϑ+ λf ∈ BV
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
. (54)

This defines a one dimensional linear subspace of initial data:

Πϑ = {ϑ̃λ : λ ∈ R} ⊂ BV
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
.

By our construction, we have that ϑ̃λ|[−a0,0) = ϑ|[−a0,0), so according to the uniqueness theorem the

two solutions coincide in D(−2a, 0), i.e. in the interior of C−0 . Since µ is continuous, we get that µλ = µ on

C−0 . By the extension principle in Theorem 7 we have that µ 6−→ 0 on C−0 , so the development of ϑ̃λ cannot

be extended at the center to the future of C−0 . In particular, we also have that bΓ 6= i+ for the perturbed

solution. We then get that γλ(u) = γ(u) and Iλ(u) = I(u).We notice that γλ is unbounded for the perturbed

solution. We take v −→ 0+ in (54):

ϑ̃λ(0) = ϑ(0) + λ lim
v−→0+

f(0) = lim
u−→0−

I(u) + λ.

25



Therefore, if λ 6= 0 we have that:

ϑ̃λ(0) 6= lim
u−→0−

I(u) = lim
u−→0−

Iλ(u).

But we remarked that Theorem 10 holds for BV solutions if we also assume that γλ is unbounded.

Therefore, the perturbed solution has A 6= ∅, proving the first part of the theorem.

Consider now ϑ, ϑ′ ∈ E , and suppose that ϑ̃λ = ϑ̃′λ′ for some λ, λ′ ∈ R. Again, since f vanishes on

(−∞, 0) we get that ϑ|[−a0,0) = ϑ̃λ|[−a0,0) = ϑ̃′λ′ |[−a0,0) = ϑ′|[−a0,0). According to the uniqueness theorem,

the two solutions corresponding to ϑ and ϑ′ coincide in the interior of C−0 . Since µ is continuous, we get that

µ = µ′ on C−0 , so γ(u) = γ′(u) and I(u) = I ′(u). We obtain:

lim
u−→0−

I(u) + λ = ϑ̃λ(0) = ϑ̃′λ′(0) = lim
u−→0−

I ′(u) + λ′,

which gives λ = λ′. Finally, this implies ϑ = ϑ′.

We proved that we can perturb any solution with integrable AC initial data that has a naked singularity

to a BV solution with the Penrose diagram:

bΓ
i+

Γ

C+
0

H

I+

B

The second conclusion of the theorem implies that the exceptional set has positive co-dimension in the

space of initial data BV
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
. This does not settle the Weak Cosmic Censorship,

because the perturbation is less regular than the original spacetime. There are two natural approaches to

address this issue:

1. We could attempt to prove the Weak Cosmic Censorship conjecture directly in the less regular class of

BV solutions. However, as we mentioned above, the blue-shift instability is not necessarily present for

BV solutions, so we would need an entirely different proof in the case when γ is bounded on C−0 .

2. We could commit to proving Weak Cosmic Censorship for AC initial data, so we should only perturb the

initial data by AC functions. It is unclear how to do this using the instability theorem 10. However,
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solutions with naked singularities satisfy even more restrictive properties than the conditions of our

instability theorem require, so one could look for more specialized instability results.

The second approach was used by Christodoulou in [6]. He carried out a detailed analysis in the case

limu−→0− I(u) = θ/λ(−2a, 0), which led to an even more restrictive condition for the spacetime to not form

trapped surfaces. In the context of this stronger instability result, any integrable AC initial data leading to

a solution with naked singularities can be perturbed by an AC function, so that the obtained spacetime has

a trapped surface. He established the following:

Theorem 12 (Weak Cosmic Censorship). For any ϑ ∈ E there exists a one-dimensional linear subspace

Πϑ ⊂ AC
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
such that:

•
(
Πϑ\{ϑ}

)
∩ E = ∅,

• ϑ 6= ϑ′ ∈ E implies Πϑ ∩Πϑ′ = ∅.

Thus, E has co-dimension at least one in the space of initial data AC
(
[−a0,∞)

)
∩ L1

(
[−a0,∞)

)
.

Remark 12 (Strong Cosmic Censorship). We can relax the definition of the exceptional set E and ask that

it consists of initial data ϑ ∈ AC
(
[−a0, vI+)

)
∩ L1

(
[−a0, vI+)

)
such that in the maximal globally hyperbolic

future development we have that bΓ 6= i+ and bΓ is not a limit point of A. Such spacetimes can have an

outgoing Cauchy horizon arising from bΓ. Our previous arguments apply in this case too, since we only

assumed that there is no marginally trapped surface in a neighbourhood of C−0 . Thus, the theorem cited

above also holds for this definition of the exceptional set. We notice that for data in Πϑ\{ϑ}, the maximal

globally hyperbolic future development has B0 = bΓ, so in particular it has no Cauchy horizon. This proves

that, generically, spherically symmetric solutions of the Einstein scalar field equations do not have Cauchy

horizons, establishing the Strong Cosmic Censorship conjecture.
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